7. 动态规划

动态规划解题套路框架

首先,动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不过在计算机问题上应用比较多,比如说让你求最长递增子序列呀,最小编辑距离呀等等。

求解动态规划的核心问题是穷举。因为要求最值,肯定要把所有可行的答案穷举出来,然后在其中找最值。

  • 首先,虽然动态规划的核心思想就是穷举求最值,但是问题可以千变万化,穷举所有可行解其实并不是一件容易的事,需要你熟练掌握递归思维,只有列出正确的「状态转移方程」,才能正确地穷举。
  • 而且,要判断算法问题是否具备「最优子结构」,是否能够通过子问题的最值得到原问题的最值。
  • 另外,动态规划问题存在「重叠子问题」,如果暴力穷举的话效率会很低,所以需要使用「备忘录」或者「DP table」来优化穷举过程,避免不必要的计算。

以上提到的重叠子问题、最优子结构、状态转移方程就是动态规划三要素。具体什么意思等会会举例详解,但是在实际的算法问题中,写出状态转移方程是最困难的,这也就是为什么很多朋友觉得动态规划问题困难的原因:

明确「状态」-> 明确「选择」 -> 定义 dp 数组/函数的含义

按上面的套路走,最后的解法代码就会是如下的框架:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# 自顶向下递归的动态规划
def dp(状态1, 状态2, ...):
for 选择 in 所有可能的选择:
# 此时的状态已经因为做了选择而改变
result = 求最值(result, dp(状态1, 状态2, ...))
return result

# 自底向上迭代的动态规划
# 初始化 base case
dp[0][0][...] = base case
# 进行状态转移
for 状态1 in 状态1的所有取值:
for 状态2 in 状态2的所有取值:
for ...
dp[状态1][状态2][...] = 求最值(选择1,选择2...)

一、斐波那契数列

力扣第 509 题「斐波那契数」。

1. 暴力递归

斐波那契数列的数学形式就是递归的,写成代码就是这样:

1
2
3
4
int fib(int N) {
if (N == 1 || N == 2) return 1;
return fib(N - 1) + fib(N - 2);
}

代码虽然简洁易懂,但是十分低效?假设 n = 20,请画出递归树:

img

提示

但凡遇到需要递归的问题,最好都画出递归树,这对你分析算法的复杂度,寻找算法低效的原因都有巨大帮助。

这个递归树怎么理解?就是说想要计算原问题 f(20),我就得先计算出子问题 f(19)f(18),然后要计算 f(19),我就要先算出子问题 f(18)f(17),以此类推。最后遇到 f(1) 或者 f(2) 的时候,结果已知,就能直接返回结果,递归树不再向下生长了。

递归算法的时间复杂度怎么计算?就是用子问题个数乘以解决一个子问题需要的时间

首先计算子问题个数,即递归树中节点的总数。显然二叉树节点总数为指数级别,所以子问题个数为 O(2^n)。

然后计算解决一个子问题的时间,在本算法中,没有循环,只有 f(n - 1) + f(n - 2) 一个加法操作,时间为 O(1)。

所以,这个算法的时间复杂度为二者相乘,即 O(2^n),指数级别,爆炸。

观察递归树,很明显发现了算法低效的原因:存在大量重复计算,比如 f(18) 被计算了两次,而且你可以看到,以 f(18) 为根的这个递归树体量巨大,多算一遍,会耗费巨大的时间。更何况,还不止 f(18) 这一个节点被重复计算,所以这个算法及其低效。

这就是动态规划问题的第一个性质:重叠子问题。下面,我们想办法解决这个问题。

2. 带备忘录的递归解法

即然耗时的原因是重复计算,那么我们可以造一个「备忘录」;

每次遇到一个子问题先去「备忘录」里查一查,如果发现之前已经解决过这个问题了,直接把答案拿出来用,不要再耗时去计算了。

一般使用一个数组充当这个「备忘录」,当然你也可以使用哈希表(字典),思想都是一样的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
int fib(int N) {
// 备忘录全初始化为 0
int memo[N + 1];
memset(memo, 0, sizeof(memo));
// 进行带备忘录的递归
return dp(memo, N);
}

// 带着备忘录进行递归
int dp(int memo[], int n) {
// base case
if (n == 0 || n == 1) return n;
// 已经计算过,不用再计算了
if (memo[n] != 0) return memo[n];
memo[n] = dp(memo, n - 1) + dp(memo, n - 2);
return memo[n];
}

实际上,带「备忘录」的递归算法,把一棵存在巨量冗余的递归树通过「剪枝」,改造成了一幅不存在冗余的递归图,极大减少了子问题(即递归图中节点)的个数。

img

递归算法的时间复杂度怎么计算?就是用子问题个数乘以解决一个子问题需要的时间

子问题个数,即图中节点的总数,由于本算法不存在冗余计算,子问题就是 f(1), f(2), f(3) ... f(20),数量和输入规模 n = 20 成正比,所以子问题个数为 O(n)。

解决一个子问题的时间,同上,没有什么循环,时间为 O(1)。

所以,本算法的时间复杂度是 O(n),比起暴力算法,是降维打击。

进一步优化,把空间复杂度降为 O(1)。这也就是我们最常见的计算斐波那契数的算法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
int fib(int n) {
if (n == 0 || n == 1) {
// base case
return n;
}
// 分别代表 dp[i - 1] 和 dp[i - 2]
int dp_i_1 = 1, dp_i_2 = 0;
for (int i = 2; i <= n; i++) {
// dp[i] = dp[i - 1] + dp[i - 2];
int dp_i = dp_i_1 + dp_i_2;
// 滚动更新
dp_i_2 = dp_i_1;
dp_i_1 = dp_i;
}
return dp_i_1;
}

二、凑零钱问题

这是力扣第 322 题「零钱兑换」:

给你 k 种面值的硬币,面值分别为 c1, c2 ... ck,每种硬币的数量无限,再给一个总金额 amount,问你最少需要几枚硬币凑出这个金额,如果不可能凑出,算法返回 -1 。算法的函数签名如下:

1
2
// coins 中是可选硬币面值,amount 是目标金额
int coinChange(vector<int>& coins, int amount);

比如说 k = 3,面值分别为 1,2,5,总金额 amount = 11。那么最少需要 3 枚硬币凑出,即 11 = 5 + 5 + 1。

1. 暴力递归

首先,这个问题是动态规划问题,因为它具有「最优子结构」的。要符合「最优子结构」,子问题间必须互相独立

假设你有面值为 1, 2, 5 的硬币,你想求 amount = 11 时的最少硬币数(原问题),如果你知道凑出 amount = 10, 9, 6 的最少硬币数(子问题),你只需要把子问题的答案加一(再选一枚面值为 1, 2, 5 的硬币),求个最小值,就是原问题的答案。因为硬币的数量是没有限制的,所以子问题之间没有相互制,是互相独立的。

那么,既然知道了这是个动态规划问题,如何列出正确的状态转移方程?

1、确定「状态」,也就是原问题和子问题中会变化的变量。由于硬币数量无限,硬币的面额也是题目给定的,只有目标金额会不断地向 base case 靠近,所以唯一的「状态」就是目标金额 amount

2、确定「选择」,也就是导致「状态」产生变化的行为。目标金额为什么变化呢,因为你在选择硬币,你每选择一枚硬币,就相当于减少了目标金额。所以说所有硬币的面值,就是你的「选择」。

3、明确 dp 函数/数组的定义。我们这里讲的是自顶向下的解法,所以会有一个递归的 dp 函数,一般来说函数的参数就是状态转移中会变化的量,也就是上面说到的「状态」;函数的返回值就是题目要求我们计算的量。就本题来说,状态只有一个,即「目标金额」,题目要求我们计算凑出目标金额所需的最少硬币数量。

所以我们可以这样定义 dp 函数:dp(n) 表示,输入一个目标金额 n,返回凑出目标金额 n 所需的最少硬币数量

那么根据这个定义,我们的最终答案就是 dp(amount) 的返回值。

搞清楚上面这几个关键点,解法的伪码就可以写出来了:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
int coinChange(vector<int>& coins, int amount) {
// 题目要求的最终结果是 dp(amount)
return dp(coins, amount);
}

// 定义:要凑出金额 n,至少要 dp(coins, n) 个硬币
int dp(vector<int>& coins, int n) {
// 做选择,选择需要硬币最少的那个结果
int res = INT_MAX;
for (const int coin : coins) {
res = min(res, subProb + 1);
}
return res;
}

根据伪码,我们加上 base case 即可得到最终的答案。显然目标金额为 0 时,所需硬币数量为 0;当目标金额小于 0 时,无解,返回 -1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
// 题目要求的最终结果是 dp(amount)
return dp(coins, amount);
}

private:
// 定义:要凑出金额 n,至少要 dp(coins, n) 个硬币
int dp(vector<int>& coins, int amount) {
// base case
if (amount == 0) return 0;
if (amount < 0) return -1;

int res = INT_MAX;
for (int coin : coins) {
// 计算子问题的结果
int subProblem = dp(coins, amount - coin);
// 子问题无解则跳过
if (subProblem == -1) continue;
// 在子问题中选择最优解,然后加一
res = min(res, subProblem + 1);
}

return res == INT_MAX ? -1 : res;
}
};

这里 coinChangedp 函数的签名完全一样,所以理论上不需要额外写一个 dp 函数。但为了后文讲解方便,这里还是另写一个 dp 函数来实现主要逻辑。

消除一下重叠子问题,比如 amount = 11, coins = {1,2,5} 时画出递归树看看:

img

递归算法的时间复杂度分析:子问题总数 x 解决每个子问题所需的时间

子问题总数为递归树的节点个数,但算法会进行剪枝,剪枝的时机和题目给定的具体硬币面额有关,所以可以想象,这棵树生长的并不规则,确切算出树上有多少节点是比较困难的。对于这种情况,我们一般的做法是按照最坏的情况估算一个时间复杂度的上界。

假设目标金额为 n,给定的硬币个数为 k,那么递归树最坏情况下高度为 n(全用面额为 1 的硬币),然后再假设这是一棵满 k 叉树,则节点的总数在 k^n 这个数量级。

接下来看每个子问题的复杂度,由于每次递归包含一个 for 循环,复杂度为 O(k),相乘得到总时间复杂度为 O(k^n),指数级别。

2. 带备忘录的递归

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class Solution {
public:
vector<int> memo;

int coinChange(vector<int>& coins, int amount) {
memo = vector<int> (amount + 1, -666);
// 备忘录初始化为一个不会被取到的特殊值,代表还未被计算
return dp(coins, amount);
}

int dp(vector<int>& coins, int amount) {
if (amount == 0) return 0;
if (amount < 0) return -1;
// 查备忘录,防止重复计算
if (memo[amount] != -666)
return memo[amount];

int res = INT_MAX;
for (int coin : coins) {
// 计算子问题的结果
int subProblem = dp(coins, amount - coin);

// 子问题无解则跳过
if (subProblem == -1) continue;
// 在子问题中选择最优解,然后加一
res = min(res, subProblem + 1);
}
// 把计算结果存入备忘录
memo[amount] = (res == INT_MAX) ? -1 : res;
return memo[amount];
}
};

很显然「备忘录」大大减小了子问题数目,完全消除了子问题的冗余,所以子问题总数不会超过金额数 n,即子问题数目为 O(n)。处理一个子问题的时间不变,仍是 O(k),所以总的时间复杂度是 O(kn)

三、最后总结

第一个斐波那契数列的问题,解释了如何通过「备忘录」或者「dp table」的方法来优化递归树,并且明确了这两种方法本质上是一样的,只是自顶向下和自底向上的不同而已。

第二个凑零钱的问题,展示了如何流程化确定「状态转移方程」,只要通过状态转移方程写出暴力递归解,剩下的也就是优化递归树,消除重叠子问题而已。

如果你不太了解动态规划,还能看到这里,真得给你鼓掌,相信你已经掌握了这个算法的设计技巧。

计算机解决问题其实没有任何特殊的技巧,它唯一的解决办法就是穷举,穷举所有可能性。算法设计无非就是先思考“如何穷举”,然后再追求“如何聪明地穷举”。

列出状态转移方程,就是在解决“如何穷举”的问题。之所以说它难,一是因为很多穷举需要递归实现,二是因为有的问题本身的解空间复杂,不那么容易穷举完整。

备忘录、DP table 就是在追求“如何聪明地穷举”。用空间换时间的思路,是降低时间复杂度的不二法门,除此之外,试问,还能玩出啥花活?


7. 动态规划
http://binbo-zappy.github.io/2025/02/17/leetcode/7-动态规划/
作者
Binbo
发布于
2025年2月17日
许可协议